PYRAMID SCIENCE

ON ALMOST EVERY CONTINENT EXIST PYRAMIDS AND PYRAMIDS-LIKE MONUMENTS

At their fields, specialists investigate them: geologically, archaeologically and architecturally

At the academy, specialists research their: terms, properties, concepts and local scenarios

THESE SUBJECTS ARE THE FUNDAMENTALS OF

 THE PYRAMID STATUS- Geometrical
- Linguistic
- Components
- Local - Descriptive TERMS
- Geometrical
- Linguistic
- Components - Descriptive TERMS
- Geometrical
- Linguistic
- Components - Descriptive TERMS
- Geometrical
- Linguistic
- Components - Descriptive TERMS
- Geometrical
- Linguistic
- Components
- Local - Descriptive TERMS
- Geometrical
- Linguistic
- Components
- Local - Descriptive

Abstract

 TERMS- Geometrical
- Linguistic
- Lompone - Descriptive
- Comp TERMS
- Geometrical
- Linguistic
- Components
- Local - Descriptive TERMS
- Geometrical
- Linguistic
- Components
- Local - Descriptive TERMS
- Geometrical
- Linguistic
- Components
- Local - Descriptive - Geometrical
- Linguistic
- Components
- Local - Descriptive TERMS
- Geometrical
- Linguistic
- Components
- Local - Descriptive - Geometrical
- Linguistic
- Components
- Local - Descriptive - Geometrical
- Linguistic
- Components
- Local - Descriptive - Geometrical
- Linguistic
- Components
- Local - Descriptive - Geometrical
- Linguistic
- Components
- Local - Descriptive - Geometrical
- Linguistic
- Components
- Local - Descriptive - Geometrical
- Linguistic
- Components
- Local - Descriptive - Geometrical
- Linguistic
- Components
- Local - Descriptive - Geometrical
- Linguistic
- Components
- Local - Descriptive - Geometrical
- Linguistic
- Components
- Local - Descriptive

TERMS
- Geometrical
- Linguistic
- Components
- Local - Descriptive
L

- Geometrical
- Linguistic
- Components
- Local - Descriptive TERMS
- Geometrical
- Linguistic
- Components
- Local - Descriptive \begin{tabular}{l}
TERMS

- Geometrical

- Linguistic

- Components

- Local - Descriptive

L

\hline

TERMS

- Geometrical

- Linguistic

- Components

- Local - Descriptive

L

\hline
\end{tabular}

 (-1)

Geometrical

 - Geometrical- Linguistic
- Components
- Local - Descriptive
\qquad

\qquad
\qquad
\qquad
 TERMS
- Geometrical
- Linguistic
- Components
- Local - Descriptive TERMS
- Geometrical
- Linguistic
- Components
- Local - Descriptive

 $+$
\qquad
\qquad
\qquad
\qquad
\qquad

GEOMETRICAL

Пррація Pyramis Pyramid

These words in Greek, Latin and modern languages
Mean: a polygonal base and sloping sides meeting at an apex In other words a geometrical shape
 In the Ancient Egyptian Writing the hieroglyph is "MR" a $\mathbf{2}$ dimensional form of the classical shape of a pyramid

LINGUISTIC

IN OTHER LANGUAGES
 the geometrical meaning in some languages is absent

In Arabic:
the word is haram هرم it means "very old " from" لسان العرب"

In Mexico:
"las piramides" which is Latin; they are are called "huaca" also meaning temple

In Chinese:

Jin' zi ta (jīnzìtǎ), means "a tower with golden symbols"
Jiao zhui, means "prism" which could be geometrical, but the literal translation is "a horn for drilling the ground"

COMPONENTS

+

I

c
5
$\frac{1}{1}+2$

 $\sqrt{3}$

I | -1 |
| :--- | :--- | :--- |

1
$-$

\qquad

\square

.
\square
\square

\square

-
de

\qquad

-

-

 \title{=
}
 \title{
=
}

 \section*{

 \section*{

 \author{ \qquad

 \footnotetext{ \author{ \author{ \author{ \author{ \author{ \author{ 爵

 －

 － TOWERS AND MOUNDS

 －

 －
 RAMIDS FROM TUMULI
 RAMIDS FROM TUMULI

 －

 \qquad

}
}
}
}
}

 \qquad

 \qquad
}

 \qquad
}

 \qquad

 \qquad

 \qquad

 \qquad}

 为

 为

 为

 为

 为
 PYRAMIDS FROM TUMULI
CLASSICAL LIMITS OF PYRAMIDS
BEYOND LIMITS BUT ACCEPTED AS PYRAMIDS}

PROPERTIES
 （2）

 \qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

29
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PROPERTIES, PYRAMIDS fromTUMULI

CLASSICAL SCOPE: BASE, HEIGHT, AND THE EXCESSIVE

The pyramid base contains the circle of the mound (Red pyramid) The circle of the mound contains the pyramid base (Khafra pyramid) In these cases the height of a pyramid is determined by the angle of repose of the mound A relationship between the base length or diagonal and the height $=<1 / 2$ side or diagonal

But will exceeded in height, with smaller pyramids the diagonal $=>$ height More narrowing of the base and increasing of the height, a pyramid becomes a TOWER Diminishing corners with a circular base, a pyramid becomes a MOUND

The pyramid appears narrow along the axis

The pyramid appears broad along the diagonal

PROPERTIES CLASSICAL

THE CLASSICAL SHAPE OF A PYRAMID IS MADE UP OF 11 STRAIGHT LINES:
4 straight lines at the base, equal in length 4 straight lines at the corners, equal in length
2 straight lines, diagonals of the base, equal in length
1 straight line from the center of the base to the apex

PERFECTION
 P

- Level base
- Plane sides
- Sharp corners
- Pin point apex

The pyramidions of Amenemhat III and Khendjer
of their pyramids their perfection extended all the wa
at the apex of their pyramids their perfection extended all the way to the base

PROPERTIES CLASSICAL
 PROPERTIES CLASSICAL

-
-
- Por

$$
-1
$$

 $-2+1+2+$ -
 I
 II

Abstract

\square
\square
„

$$
1
$$

- Sharp corners

.

\square (0
(Height $=<1 / 2$ the side or diagonal of the base)
 \section*{\section*{PROPERTIES CLASSICAL
 \section*{\section*{PROPERTIES CLASSICAL

 PROPERTIES CLASSICAL

 PROPERTIES CLASSICAL A} A}

(
¢ -

\square

Memorial of the civil war

Richmond Virginia

$19^{\text {th }}$ Dynasty BC 1300
1st centaury $B C$

\qquad
\qquad

- \qquad
\qquad
(20.0.0.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PROPERTIES CLASSICAL

\qquad

THE HEIGHT EXCEEDS THE ANGLE OF REPOSE

\qquad (\qquad
\qquad
\qquad
 \section*{\section*{PROPERTIES}}
 \section*{\section*{PROPERTIES}}
Cole
\square
\square
\square
-
\qquad
\qquad
\qquad
\qquad
\qquad J
\qquad

BEYOND LIMITS BUT ACCEPTABLE

Rounded corners but short of being mounds

The truncated pyramid of king Khuwi at Dara

BEYOND LIMITS BUT ACCEPTABLE

\qquad
\qquad

 BEYOND LIMITS BUT ACCEPTABL

BEYOND LIMITS BUT ACCEPTABL}

\qquad
\qquad

 -

(2)

 (Tl) -
\qquad
\qquad

\square
\qquad
\qquad

\qquad
\square
\square
\qquad
\qquad ,
$+$
$+1$
4.

\square
\square

\square
\square
\square
\qquad
\qquad
\qquad
\qquad
\square
\qquad

BEYOND LIMITS BUT ACCEPTABLE

The base is rectangular not square

Temple of inscriptions at Palenque

\qquad
\qquad oroken UR Into Steps oroken UR Into Steps oroken UR Into Steps $\square-1+2$ broken up into steps broken up into steps
 broken up into steps
\qquad
\qquad
\qquad
\qquad
\qquad broken up into steps broken up into steps
\qquad broken up into steps

The corner lines are broken up into steps
 The corner lines are broken up into steps

 We corner lines are broken up into steps broken up into steps broken up into steps broken up into steps broken up into steps\qquad

\qquad
(broken up into steps broken up into steps

$-$

\qquad

Step Pyramids

BEYOND LIMITS BUT ACCEPTABLE

正

BEYOND LIMITS BUT ACCEPTABLE

1 The corner if ines are showing a double slope \qquad
\qquad $1=\frac{1}{1}$

\qquad The corner lines are showing a double slope The corner lines are showing a double slope The corner lines are showing a double slope
-

路
-

. \qquad
I

PYRAMID-LIKE MONUMENTS

Ziggurats of Mesopotamia

PYRAMID-LIKE MONUMENTS
BEYOND LIMITS IN SHAPE The base is circular - no corners - no flat sides: Mou
BEYOND LIMITS IN SHAPE The base is circular - no corners - no flat sides: Mound, Tumuli, Stupas and Barrows

an

11

5
\qquad -

1

By John Cowie
 \title{
Silbury Hill
 \title{
Silbury Hill
 Erroneously: THE WHITE PYRAMD
}
-

 \section*{\section*{PYRAMID-LIKE MONUMENTS
 \section*{\section*{PYRAMID-LIKE MONUMENTS

 Tucume structures of the valley of Lambayeque Peru

 Tucume structures of the valley of Lambayeque Peru

 }

 }

 PYRAMID-L}

 PYRAMID-L}

 PYRAMID-L}

\square

$1+\frac{1}{4-1}$

\qquad
$=$
E-

III

$$
\square
$$

4

11

1

 \qquad $=$

教

$+$

Abstract

d \qquad

Tucume structures of the valley of Lambayeque Peru
Hancoll

Tucume structures of the valley of Lambayeque Peru

$=1$
$=$

PYRAMID-LIKE MONUMENTS

Cahokia mounds A.D. 1200

 ϕ

Baharia Oases western desert Baharia Oases western desert Baharia Oases western desert

\square
-

\qquad

 Baharia Oases western desert Baharia Oases western desert Baharia Oases western desert

.

\qquad
 -1

Abstract

Abstract

\square

\square
\square
\square
\square
A
\square

$$
\square
$$

$$
0
$$

\square
\square 8

 $=$ \square
CONCEPTS
CONCEPTS
CONCEPTS
CONCEPTS
CONCEPTS
CONCEPTS \qquad
CONCEPTS
\square

$$
1
$$

N

$$
1
$$

$$
\square
$$

$$
\square
$$

\square
\square
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\square
-

HISTORICAL

SQUARE TO RECTANGULAR MASTABA; 4 TO 6 STEP PYRAMID; ACTIVE SERVICE, NEGLECT, DESTRUCTION, DISCOVERY and RESTORATION

The Step pyramid at Saqqara (after J-Ph. Laue 1962)

ARCHTECTURAL RECONSTRUCTION POSSIBILITIES OF A RUINED PYRAMID

Classical (2 options), bent or stepped

The rock knoll of the Brick pyramid (Lepsius 1) at Abu Rawash

THE MSP SEILA OPENS UP A NEW ERA IN PYRAMID ASTRAL CULTS

RELIGIOUS

The 2 stele in the eastern chapel may have been aligned with a Simultaneous meridian
transit of Phecda and Megrez signalling almost accurately due-north in the case of Seila
The 2 stele in the eastern chapel may have been aligned with a Simultaneous meridian
transit of Phecda and Megrez signalling almost accurately due-north in the case of Seila

ASTRAL ORIENTATION
 \qquad

Seila
Seila
 ㄴ

I

T-
\square
\square

Abstract

t $\quad 1$

0 x_{1}^{2}

 \square

 \square \square ? , \square
\square

1
1
I
$\square-+$
\qquad
\qquad
\qquad
\qquad
\qquad
-
\square
\qquad
\square
of
Seila
of
.
\qquad

THE MSP AT ELEPHANTINE

Oriented to an important day of the civil calendar

$\sim 161 / 4^{\circ} \pm 3 / 4^{9}$ is the declination of Sunrise at Wepet Renpet ca. 2570 ± 30 B.C.

LOCAL SCENARIOS

MEXICO
 CHINA
 BOSNIA

local scenario MEXICO

EXCESSIVE FEATURES WHICH ARE ACCEPTED: MESOAMERICA

Huaca del Sol at Teotihuacán

Huaca de la Luna

Chichén Itzá in the Yucatan

Tikal in Guatemala

local scenario CHINA

local scenario BOSNIA

GIANT PYRAMID HILLS

classical shape - geologically built ; with human intervention?

The pyramid hill Visočica north side

N E corner

N W corner

Image by the artist

GREATEST OF ALL

AMAZING! EVEN BY POBOTS

The great pyramid of Khufu was built of limestone blocks of an average volume of one m^{3} weighing 2.5 metric tons 2.6 million blocks .

This figure comes from the volume of a pyramid being base ${ }^{2} \mathrm{X}$ height $/ 3,\left(230^{2} \times 148 / 3\right)$
2,600,000 m ${ }^{3}$.
The Turin Canon tells us that Khufu reigned for
23 years.
Assuming that the pyramid was built every day of the 23 years of his reign, then we have of building 8395 days .
Working hours for humans should be 10 hours a day, then we have 83,950 hours or 5,037,000 minutes.
To install 2,600,000 blocks in 5,037,000 minutes by robots they have to install

ONE BLOCK, EVERY, LESS THAN TWO MINUTES. (1.94 MIN)

By man power the actual procedure was not like this; it had to be much faster rate at the start and slower towards the finish

SAFETY OF LOGISTICS

An example at the dam at Wadi Garawi

The dam at Wadi Garawi was built to prevent flash floods

CONCLUSION

This brief browsing of pyramid science:
INVESTIGATING: geology, archaeology and architecture and

RESEARCHING: terms, properties, concepts and local scenarios

SHOWS THAT:

AROUND THE WORLD THERE ARE HUNDREDS OF

PYRAMIDS AND PYRAMID-LIKE MONUMENTS

They need to be brought to light.

